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Abstract 
 

In this paper, we describe the architecture of an 

innovative network processor aiming at the acceleration 

of packet processing in high speed network interfaces 

and at the tight coupling of low and high level protocols. 

The proposed design uses programmable hard-wired 

components with line rate throughput and is capable of 

executing protocols and handling efficiently high and 

low level streaming operations.  We discuss the details of 

the main innovation of the proposed design, which 

incorporates a three stage RISC-based pipelined module 

and a composite scheduling unit for internal resource 

management and outgoing traffic shaping. When both 

components are integrated on the same platform then 

maximum and fair utilization of the available resources 

is achieved. Quantitative performance results are given, 

both by means of microcode profiling and simulation for 

indicative applications of the protocol processor. 

 

1. Introduction 
 

Despite the recent slowdown in the 

telecommunications industry, the growth in data traffic 

especially the traffic associated with Internet based 

applications, continues to expand exponentially. With 

today's DWDM the capacity of a single fiber has 

increased 160-fold. However DWDM does not hold all 

the answers to solving bandwidth demand. On the 

contrary, new aggressive requirements for the 

telecommunications networks have been set, shifting the 

bottleneck from transport back to the network nodes. 

Coping with the nodes’ bottleneck however is not easy. 

Although the advances in Si technology and 

complementary metal oxide semiconductor, the increase 

in line cards speeds and performance demand outpaces 

the rate at which RISC clock and bus speeds increase. 

Thus, the necessity to increase packet-forwarding 

capacity and to enhance performance will have to come 

from the nodes’ increase in size and intelligence [1]. One 

way to achieve this is by hybrid integrating RISC cores 

with dedicated hardware. The so-called network 

processors have to be re-configurable and fully 

programmable in order to cut down time-to-market and, 

at the same time, be able to support new features and 

protocols, meeting the need of modern, highly-

sophisticated services (packet classification, flow 

scheduling, firewall services etc.).  

In this paper the architecture of a novel network 

processor, called the Programmable Protocol Processor, 

PRO3, is described and is used as reference to explore the 

intricacies of the processing and scheduling components . 

Section 2 presents the proposed PRO3 architecture, while 

section 3 and 4 analyze the role of processing and 

scheduling elements, respectively, in the proposed design 

architecture. Finally section 5 presents simulation 

performance results.  

 

2. The PRO3 Architecture 
 

The PRO3 system architecture, presented in this 

section, follows a different approach in the area of high 

speed protocol processing. The protocol processor aims 

in accelerating execution of telecom protocols by 

extending a high-performance RISC core with 

programmable, pipelined hardware. CPU demanding and 

(hard) real-time protocol functions are handled by the 

programmable hardware, while the remaining functions, 

as well as higher layer protocols are handled by the on-

chip RISC in an integrated way. Of key importance in 

this architecture is the integration of the processing 

elements of the system with scheduler components to 

facilitate data processing in a fair, balanced manner and 

to control data streams generated by the chip.  

The functional architecture of the protocol processor is 

depicted in Figure 1. The component consists of a central 

processing unit with an embedded RISC and a Re-

configurable module, as well as of a set of on-chip 
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peripherals, common to protocols and streaming tasks. 

The necessity of specialized Network Processors to 

handle high-speed links and support demanding 

applications stems from the fact that a certain subset of 

the protocol processing tasks are highly resource 

consuming, either in terms of computational complexity 

or memory throughput. By properly analyzing the 

bottlenecks in networking applications ([1], [2]) the set of 

most critical functions can be significantly accelerated 

with the aid of either fixed (for well-defined functions 

that are standardized) or programmable hardware. Thus, 

the same component with different configuration will be 

able to perform many different protocol Finite State 

Machines (FSMs) that require high performance 

execution and handling of messages with low 

propagation/processing delay. 

 
Figure 1. PRO3 functional architecture 

The on-chip peripherals of the protocol processor 

contain the following modules: Message Recognition, 

Generic Encoder/Decoder, Timer Pool, and Memory 

Management. Generally protocol processing is initiated 

by data reception from a network interface in the form of 

packet with specific protocol information residing in an 

appended header or trailer. Proper evaluation of the 

necessary fields that hold the protocol information leads 

to appropriate classification of the message. The Re-

configurable Module handles the execution either of 

entire protocols or most frequently used and time-

consuming branches of protocol FSMs in error free 

conditions, according to the requirements of each 

application, the type of the message or the protocol 

executed. The Re-configurable Module is accessible to 

the main RISC CPU through which configuration code is 

executed as well as protocol state information is 

exchanged. The result of protocol processing in most 

cases is an update in stored protocol state, as well as the 

generation of a new or modified message/packet (a 

function to be executed by the Generic Encoder/Decoder) 

to be forwarded either to a higher layer protocol or to an 

output network interface. The symbolic feedback bus 

denotes potential return of messages in the input of the 

component in case that a multi-protocol stack is 

implemented. Implementation of timers, as well as 

efficient memory management including look-up table 

implementation, data and protocol context buffering are 

also an integral part of the protocol processing problem 

and potentially a bottleneck in generic architectures, 

which however can be offloaded to dedicated hardware 

units, as appearing in Figure 1. 

For the PRO3 system implementation, we developed 

both fixed hardware units, as well as optimized micro-

engines integrated with a commercial RISC processor in 

a layered architecture optimized for efficient protocol 

processing targeting link rates up to 2,5 Gbps. RISC 

based micro-engines are best candidates when 

programmability is required. The actual block level 

PRO3 architecture is depicted in Figure 2. The PRO3 

system is a distributed architecture incorporating 

dedicated hardwire modules for pre-processing and post-

processing of low level protocols and two RISC-based 

Pipeline Modules (RPM) operating in parallel to 

facilitate load balancing and execution of protocols with 

different incoming/outgoing data flows.  

Packet pre-processing and lower layer protocol 

functions are executed by means of hardwired 

functionality (like the full ATM/CPCS layers), as well as 

programmable PDU processing and packet classification 

by means of a RISC-like micro-engine for Field 

Extraction and a controller of a high throughput external 

Ternary CAM (Content Addressable Memory) device for 

flexible and deterministic classification. 

 

Figure 2. Block architecture of PRO3 system. 

Each RPM consists of a modified RISC core [3] 

surrounded by a Field Extraction (FEX) programmable 

microengine, which directly loads the required protocol 

data to the RISC for processing, and a Field Modification 

programmable engine (FMO in fig. 2) for flexible PDU 

construction and header modification. All together form 

a powerful 3-stage pipeline module capable of providing 

the mixed hardware and software processing heart of the 

system and performing the FSM of each protocol.  

The Internal Scheduling Unit, which is also a 

composite module, maintains a number of priority queues 

in order to schedule the forwarding of packets for 

processing according to the priority of each flow. It is 

also used to multiplex the execution of data transactions 
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to the different internal destinations and/or allow for 

interleaved transactions over the Internal Bus. A dual 

scheduler module, configurable to operate either on fixed 

size cells or variable length packets, supports aggregate 

per group peak rate shaping for IP flows and guaranteed 

peak rate shaping per ATM flow.  

Other main blocks perform data/queue management 

and higher layer protocol processing (performed in SW 

on the on-chip standard Hyperstone RISC [3] or the 

external CPU). The common high speed path (up to the 

transport layer) is performed in the PRO3 hardware 

pipeline, and higher layer applications on the internal 

Hyperstone RISC CPU. Packets are stored per-flow in the 

external DRAM in queues implemented as linked list 

data structures [4] and can be retrieved by the Data 

Memory Manager module (DMM) in response to specific 

commands and be delivered over the internal bus either 

to the RPM modules or to the control RISC CPU or to a 

host CPU (via the insert/extract interface) or directly to 

the output interface.  

In general, the following sequence of operations is 

applied to each incoming packet: reception, 

classification, state processing, and transmission. Each of 

these generic functions consists of a set of lower level 

functions and can be understood as pipeline stages. In 

case of exception the packet is redirected to the internal 

or the external RISC CPU. 

 

3. The RISC-based Pipelined Module, RPM 
 

The RISC-based Pipelined Module consists of three 

logical units: Field Extractor (FEX), the Protocol-

Processing Engine (PPE), which is a composite module, 

and Field Modifier (FMO). The PPE itself consists of 

three additional modules: the Modified Hyperstone RISC 

(MHY), the RPM-Glue Logic (RPG), and the Read/Write 

Control RAM module (RWR). Figure 3 depicts RPM top 

level design architecture.  

 

Figure 3. RISC-based Pipelined Module 

This composite 3-stage design, where dedicated 

functional units are interconnect with a RISC core, offers 

an extreme advantage on tasks with high functional 

diversity. In this way, the usefulness and efficiency of a 

single processor core are extremely enhanced by 

providing the means to tailor its circuits for special tasks 

and reversely the diversity of applications of the 

dedicated units with their highly optimized configuration 

is broaden to accelerate protocol processing (or any 

computing task), yielding a clear cost/performance 

advantage. In a network processor, protocol portability is 

achieved accompanied with a high functional diversity of 

applications with significant performance improvement. 

 

The Field Extraction/Modification Engines 
 

The Field Extraction and Field Modification engines 

of RPM module are pipelined and fully programmable 

modules that operate on a protocol-based firmware. Thus, 

only specific fields are extracted from FEX and fed to 

PPE module and these only specific fields are updated 

with their new values in FMO. This results in a constant 

ratio of cycle budget-to-packet length and optimal total 

processing time. The packets that are being received are 

stored in DMM and only the first 64 or 128 byte, 

containing the TCP/IP header information, called 

hereinafter segments, which needs to be processed are 

forwarded to RPM module. This efficient way of 

processing offers clear advantage of the architecture that 

differentiates it from other network processor designs. 

 

The Modified Hyperstone RISC (MHY) 
 

The Modified Hyperstone RISC (MHY) module is the 

central protocol processing element in the PRO3 system. 

The MHY is a derivative of the standard Hyperstone E1-

32XS microprocessor core [3].  Major architectural 

features of the MHY are: 

1) The most recent stack frames are kept in a register 

stack, thereby reducing data memory accesses to a 

minimum by keeping almost all-local data in registers. 

The Modified Hyperstone RISC uses 32 global and 64 

local registers of 32 bits each, 16 global and 16 local 

registers directly addressable. Two sets of 14 global 

registers and 64 local registers are accessible from 

outside the core via a special port. Core accesses are 

switchable between the two sets of 14 global registers and 

between the two parts of a 32+32 register partitioning of 

the 64 local registers. In this way, state and packet 

information can be put into the register file by the RPM 

Glue Logic, and through the added read port, updated 

state and packet information is read out by the RPM Glue 

Logic. 

2) 16 KByte dual-ported and fully static On-Chip 

Memory with the second port accessible from outside the 
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core. Through the added port, initialization and status 

repots are obtained from an external/internal CPU. 

Additionally pipelined memory access allows 

overlapping of memory accesses with execution. 

3) On-chip Instruction Cache omits instruction fetch in 

inner loops and provides pre-fetch.  

4) Variable-length instructions of 16, 32 or 48 bits 

provide a large, powerful instruction set, thereby 

reducing the number of instructions to be executed. 

Primarily used 16-bit instructions halve the memory 

bandwidth required for instruction fetch in comparison to 

conventional RISC architectures with fixed-length 32-bit 

instructions, yielding also even better code economy than 

conventional CISC architectures. Most instructions are 

executed in one cycle and are orthogonally set. An 

instruction pipeline depth of just two stages — 

decode/execute — provides branching without insertion 

of wait cycles in combination with Delayed Branch 

instructions.  
 

The RPM-Glue Logic (RPG) 
 

The RPM-Glue Logic (RPG) interfaces and transfers 

data between the Field Extractor, the Field Modifier, the 

Modified Hyperstone RISC and the Read/Write Control 

RAM module. The main features of RPM-Glue Logic 

are: 

1) Programmable entry points for SW packet handling 

according to protocol type and message type 

2) Programmable handling of “input” and “output” parts 

of flow state 

3) Implements bypassing of updated flow state for back-

to-back processing of packets of the same flow 

4) Full bandwidth input/output capacity 

The operation of RPG for incoming packets includes 

transferring of packet fields from the Field Extractor to 

the local portion of the registers of the modified 

Hyperstone core, and initiating packet processing when 

the modified Hyperstone core has completed processing 

of the previous packet. Additionally, RPG reads and 

updates flow state information from and to the 

Read/Write Control RAM and forward it to the MHY 

core. It is worth noting that the MHY core does not have 

direct access to the external memory and application 

firmware is resident on its on-chip cache memory. 

Respectively for outgoing packets RPG interprets the 

outcome of the packet processing and transfers the 

updated packet fields from the local portion of the 

registers of the modified Hyperstone core to the Field 

Modifier. Additionally, RPM Glue Logic has to maintain 

consistency between the flow state information used in 

the packet processing, by means of bypassing. When 

packets of the same flow are processed back-to-back, the 

state flow read from the Control RAM is stale, and the 

RPG undertakes the responsibility to forward internally 

the correct flow state information, implement the 

necessary control and status registers for the operation of 

the PPE, and perform reset and support the initialization 

sequences for PPE. 

To process a packet the RPM Glue Logic places the 

extracted fields obtained from the Field Extraction 

engine as well as the state information about the flow 

into the MHY register file and/or internal memory. When 

this is complete, dedicated signals are used to indicate 

the correct packet data locations and dispatch tables to 

point to the appropriate processing routine. While the 

process is running, the RPM Glue Logic may use the 

second part of the register file to already load the field 

and state information for the next packet. 
 

4. The Scheduler Unit  
 

Scheduling in such a processor environment is 

required to resolve contention for processing resources in 

a fair manner, or to distribute in time the transmission of 

packets/cells (in a network medium) due to traffic 

management rules (shaping). It is evident that packets 

from connections with low delay requirements should 

bypass the FIFO service discipline and be forwarded for 

internal processing with higher priority. When the 

processor cannot sustain worst-case conditions under line 

rates such as 2.5Gbps or 10Gbps, as is the case for TCP 

stateful inspection, queuing is necessary and an 

appropriate queuing service discipline has to be 

implemented.  The scheduler unit maintains a number of 

priority queues in order to schedule the forwarding of 

packets for processing according to a configurable 

priority per flow or per QoS class.  The scheduling unit 

in the PRO3 system consists of a Task Scheduler Unit, 

TSC, which controls the data flow in the high-speed 

internal bus and a Traffic Scheduler Unit, TRS, to shape 

the generated traffic according to traffic management 

specifications and service level agreements.  

Each flow is served by the DMM through a dedicated 

queue (in which the data/packets are stored/reassembled) 

directly indexed by the flowID value, assigned by the 

Classifier, uniquely identifying the protocol data and 

context for each connection and each layer of the 

protocol stack. The DMM is responsible to temporarily 

buffer incoming data packets, until they are fully 

processed and ready to be forwarded (or discarded). It 

implements queues of packets, one queue per active 

connection, and each packet being of variable length. 

The DMM segments the incoming packets into fixed-size 

segments of 64 bytes. This segmentation of memory 

space allows optimizing the memory utilization, 

increasing the performance of the DMM, and reducing 

the delay of high-priority packets [4].  The queues that 

Proceedings of the 16th International Conference on VLSI Design (VLSI’03) 
1063-9667/03 $17.00 © 2003 IEEE 



are managed by the DMM will be called Data Queues in 

order to distinguish them from the TSC and TRS data 

structures and are associated explicitly with one 

destination within PRO3 and a specific handler/protocol 

that will be used for the processing of each packet 

classified in that queue. The data structures managed by 

the TSC and TRS will be called hereafter Scheduling 

Queues (and will be denoted as SIDQ). The organization 

of the SIDQs will be discussed in detailed in the next 

sections.  

 

Task Scheduler module, TSC 
 

In total, there are 32 scheduling queues that may be 

used for sharing the processing resources of system. (i.e. 

field extraction & classification module, RPMs, RISC & 

external CPU) in a Weighted Round Robin  manner [6]. 

Each of these queues is associated with one of the 

possible internal destinations of packets within PRO3 

and a specific handler protocol that will be executed for 

the data of this flow. Obviously more than one data 

queues will share the same scheduling queue. The 

multiplexing of multiple flows in one scheduling queue 

(flow group) is based on the Round-Robin (RR) 

discipline. Thus, all the flows that hash into the same 

scheduling queue will share equally among them the 

portion of internal processing resources (in terms of 

service opportunities) that is allocated according to the 

pre-configured weight for that scheduling queue.  

The 32 scheduling queues are hierarchically 

organized. The first queue shall be treated with strictly 

highest priority over the others (with most prominent use 

to schedule traffic with low delay requirements for 

processing by the RPMs). The remaining 31 scheduling 

queues can either be treated with the same priority level 

and be serviced in a Weighted Round Robin (WRR) 

fashion or (determined upon configuration) can be 

hierarchically organized into two sets of 15 and 16 

queues respectively with strict priority of the first set of 

queues over the second. Scheduling queues of the same 

priority/set are serviced in a WRR fashion.  

 

Traffic Scheduler module, TRS 
 

The outgoing Traffic Scheduler (TRS) orders the cells 

(ATM) or packets (IP) to be transmitted to the output 

network interface performing a shaping function in terms 

of peak-rate policing. Whenever the output data queues 

are active the TRS sends commands for transmission 

respecting the minimum transmission interval for flows 

that are amendable to specific traffic contracts and 

service level agreements. The TRS can support these 

functions utilizing the same basic data-structures 

required for the operation of the TSC and the same 

external memory space. Similarly to the TSC case the 

flows are grouped into 32 queues (SIDQs) on the basis of 

their predefined peak rate transmission. The 32 basic 

rates are adequate even in very high-speed link rates [7]. 

All the flows in the same SIDQ are shaped in the same 

peak rate (measured in segments or cells per slot). The 

flows within a SIDQ are served in a round robin way and 

the cell/packet transmission interval is dynamically 

modified as a function of the number of flows with 

pending packets existing in the rate queue. TRS 

operation is based on the NTT, MTI and AC parameters, 

denoting the Next Transmission Time, Minimum 

Transmission Interval and number of Active Connections 

respectively. The NTT variables are implemented as 

countdown timers kept on chip, one per scheduling (rate) 

queue, enabled by the general Slot Clock. In ATM based 

applications AAL packets leave the system cell by cell. 

Each time that a cell from the rate queue i is transmitted 

the timer is set to the MTIi/ACi value (since MTI 

represent the basic rate for a single flow). In IP 

applications, the NTTi is associated with the 

transmission of a data segment whose size is predefined. 

Each time that an IP packet is waiting to be transmitted, 

the timer is set to the value Ti*(PL/PDS), where PL is the 

packet length and PDS the size of the predefined data 

segment. Thus, 32 discrete rates are supported with 

guaranteed peak rate shaping per ATM flow and 

aggregate per group peak rate shaping for IP flows. 

When a counter reaches zero, a flag rises indicating that 

a cell should be transmitted and the timer is reset. To 

achieve maximum throughput in the worst case, 32 flags 

should be inspected in a slot time and this yields for the 

same straightforward implementation of a priority 

enforcer as in the case of circular scan of eligible SIDQs 

by the TSC circuitry.  

 

5. Performance Evaluation 
 

In this last section we will quantify the performance 

enhancements that the innovative architecture of the 

PRO3 protocol processor can achieve. Our approach 

combine legacy benchmarking metrics for estimating the 

performance of programmable micro-engines 

(Instructions/Sec-IPS, Instructions/Cycle-IPC, etc.) as 

well as the trends of the NP Forum (NPF) [8]. A new 

metric introduced by the NPF is the Headroom Concept, 

which has been introduced in order to allow the 

measurement of the ability of a Network Processing 

Platform to perform multiple networking functions 

aggregately. Since PRO3 follows a hybrid architecture 

with fixed H/W units and programmable engines 

designed to operate in pipeline or in parallel we will 
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denote Headroom as the percentage of the available 

processing resources of the chip that can be exploited in 

parallel. The main processing units that can operate in 

parallel are the two RPM units and the central RISC unit. 

RPM throughput is determined by the worst-case 

performance of each of its pipeline stages and results are 

discussed in detail in the sequence. 2,5 Gbps sustained 

throughput can be achieved for average case conditions 

according to typical IP packet distributions. However 

worst-case conditions (continuous stream of 40-Byte IP 

packets) deteriorate this performance.  

The performance evaluation has been based on the 

following facts: the PRO3 chip is implemented using 

UMC 0.18 CMOS technology and the clock speed is 

200MHz with a 64-bit wide internal bus. For the 

performance evaluation of the programmable units 

firmware for all the microengines was developed and 

open source C code was ported for implementing a 

stateful inspection Firewall with Network Address 

Translation (NAT) support [5]. Samples of real TCP/IP 

traffic have been used as input in H/W simulation and the 

processing time in each module was measured. In order 

to evaluate the application performance, simulations with 

different packet and header lengths were carried out. 

Based on the results optimisation of the cores design was 

possible. Following the performance of the cores of the 

RPM module is investigated. Two parameters were 

measured, the total number of the executed instructions 

and the corresponding processing time. Based on these 

figures, the throughput of each sub-block and of the 

whole module was estimated.   

Figure 4a displays the total number of instructions 

executed by FEX block in the case of 64-byte and 128-

byte packet. For the particular implementation of the 

stateful-inspection Firewall application, FEX sub-block is 

commissioned to process only the TCP and IP header of 

each packet, by extracting the fields mentioned in Table 

A. The Data Memory Manager sends to RPM either one 

segment, in case the IP packet length is no more than 64-

bytes, or two segments (each 64-bytes) in case the IP 

packet is larger than 64 bytes. In this manner, it is 

guaranteed that all the relevant fields from IP and TCP 

headers will be fetched for processing to the FEX block 

of the RPM.  

 
Figure 4. (a) Number of executed instructions 
and (b) processing time of FEX micro-engine 
versus IP header lengths 

Form figure 4a, it is worth noting that the number of 

required instructions is independent of the IP packet 

length. In addition it may be observed that for small IP 

packets (IP packet length between 40 and 64 bytes) the 

number of required instructions is proportional to the IP 

header length, which depends on the number of valid IP 

options. Additionally, for IP packets that are larger than 

64 bytes, a fixed number of instructions are required for 

the cases where the IP header length is between 20 and 

48 bytes, while for the rest of the IP header length cases, 

this number increases proportionally to the IP header 

length, reaching a maximum of 43 instructions in case of 

an IP-packet with 60 byte of IP options. 

The average cycle-to-instruction ratio for the FEX 

micro engine is 1.6. Although this value can be improved 

by reducing the most clock-consuming instructions, 

however since the processing does not depend on the 

total IP packet length, no major improvement is 

anticipated. Finally, from Figure 4a it can be seen that 

the total number of instructions for two segments (IP 

packet length larger that 64 bytes) is smaller than that for 

one segment (IP packet length between 40 and 64 bytes). 

This is due to the fact that the firmware easily identifies 

the case of two segments and, based on the IP header 

lengths (resides in first segment), scans faster and jumps 

directly to the fields to be extracted, which reside in the 

second segment. The corresponding processing time of 

FEX micro-engine is displayed in Figure 4b. From this 

figure it can be seen that the cycle budget of the FEX 

micro-engine for 40-byte packets is close to 4 

Mpackets/sec (Mpps). This throughput can be doubled 

when the traffic is balanced between the two RPM 

modules and sustain in this way OC-48 rate even for 

TCP/IP traffic of 40-byte packet length.  

Filed Modifier also receives the same number of 

segments as FEX –one or two 64-byte segments– 

depending on the total packet size –, which are stored in 

the bypass FIFO. However in Field Modifier, the total 

process time, depends on the IP header length and the 

number of valid bytes that reside within the segments 

(one or two) stored in the bypass FIFO. To this end, 

optimization was possible yielding significant improve in 

FMO sub-block performance. For example, the average 

cycle-to-instruction ratio was 2.2 and after the 

optimization was decreased down to 1.7. That was 

attainable after detecting, which firmware routines are 

most often called, which are the most clock-consuming 

ones and which can be executed in parallel.  

After the optimization, a significant decrease in the 

number of executed instructions was achieved, almost 

60%, resulting in shorter processing times and in an 

improved of the instruction-to-clock ratio. Figure 5 

displays the total number of the executed instructions of 

the optimized Field Modifier versus the total IP packet 
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length for different IP header lengths. From Figure 5 we 

may observe that for packets having the same IP header 

length (same number of valid IP option) the total number 

of FMO instructions required for NAT is, as expected, 

proportional to the IP packet length. Additionally, for IP 

packets that have the same length the number of 

instructions is inverse proportional to the IP header 

length (number of valid IP options). This is due to the 

fact that, when more IP options are present the less jump 

instructions the micro-engine needs to scan the contents 

of the packet. 

 
Figure 5. Number of executed instructions in 
Field Modifier for different packet/header 
lengths  

Finally, Figure 6 displays the total processing time 

versus the IP segment length. From Figure 6 it can be 

derived that a single Field Modifier module can sustain 

about 4 Mpps traffic assuming packets of 40-byte. When 

both the RPM modules are used then the throughput is 

double to 8 Mpps, which exceeds the maximum 7.5Mpps 

for 40-byte packets for OC-48 line rate.  

 
Figure 6. FMO Processing time versus packet 
length for different IP header lengths  

Concerning the third complex sub-block of RPM 

module, the Modified Hyperstone RISC, its throughput 

depends heavily on the custom running application and it 

is estimated, that for complex applications, like TCP 

state updating, less than 170 instructions are needed and 

this of course has an impact in the overall throughput. 

However, for complex scenarios this is a trade off that 

any network processor faces. Based on our analysis, by 

using two RPM modules and balancing the load between 

them (supported by the Internal Scheduler design) 4 

Mpps can be sustained at worst case, with only TCP 

traffic. For the average IP packet (about 128 bytes) this 

rate exceeds the OC-48 rate of 2,5 Gbps. It is worth 

noting that packet classification, queuing and scheduling 

can support 2,5Gbps link rates even for worst case 

minimum packets.  

 

6. Conclusions 
 

In this paper the Programmable Protocol Processor 

architecture was presented with emphasis in the 

acceleration of packet processing using an innovative 

concept of a 3-staged pipelined processing operation and 

certain scheduling implementation in order to balance 

workload and resolve internal contention. Such a design 

is suitable for protocol processing in high-speed 

networks.  

This work was performed in the framework of the 

PRO3 project, which is partially funded by the IST 

Program of the European Community. The authors would 

like to acknowledge the contributions of their colleagues 

from Lucent Technologies, Hyperstone AG, IMEC, 

National Technical University of Athens, Ellemedia 

Technologies, Technical University of Crete and 

InAccess Networks. 
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